3.145 \(\int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=174 \[ -\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{5/2} d}+\frac {115 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {35 \tan (c+d x)}{16 a^2 d \sqrt {a \cos (c+d x)+a}}-\frac {15 \tan (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {\tan (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

-5*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d+115/32*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/
(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-1/4*tan(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)-15/16*tan(d*x+c)/a/d/(a+a*co
s(d*x+c))^(3/2)+35/16*tan(d*x+c)/a^2/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2766, 2978, 2984, 2985, 2649, 206, 2773} \[ \frac {35 \tan (c+d x)}{16 a^2 d \sqrt {a \cos (c+d x)+a}}-\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{5/2} d}+\frac {115 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {15 \tan (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {\tan (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(-5*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(5/2)*d) + (115*ArcTanh[(Sqrt[a]*Sin[c + d*x]
)/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - Tan[c + d*x]/(4*d*(a + a*Cos[c + d*x])^(5/2))
- (15*Tan[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2)) + (35*Tan[c + d*x])/(16*a^2*d*Sqrt[a + a*Cos[c + d*x]]
)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2984

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^(n + 1))/(f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=-\frac {\tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {\int \frac {\left (5 a-\frac {5}{2} a \cos (c+d x)\right ) \sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {15 \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\left (\frac {35 a^2}{2}-\frac {45}{4} a^2 \cos (c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {\tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {15 \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {35 \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {\int \frac {\left (-20 a^3+\frac {35}{4} a^3 \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{8 a^5}\\ &=-\frac {\tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {15 \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {35 \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}-\frac {5 \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx}{2 a^3}+\frac {115 \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {\tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {15 \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {35 \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {5 \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^2 d}-\frac {115 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac {5 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{5/2} d}+\frac {115 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {15 \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {35 \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 24.10, size = 2051, normalized size = 11.79 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^2/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

((5 - 5*I)*(1 + E^(I*c))*(Sqrt[2] - (1 - I)*E^((I/2)*c) + (16 - 16*I)*E^(((3*I)/2)*c + I*d*x) + (20 + 20*I)*Sq
rt[2]*E^((2*I)*c + ((3*I)/2)*d*x) - (34 - 34*I)*E^(((5*I)/2)*c + (2*I)*d*x) - (20 + 20*I)*Sqrt[2]*E^((3*I)*c +
 ((5*I)/2)*d*x) + (16 - 16*I)*E^(((7*I)/2)*c + (3*I)*d*x) + (4 + 4*I)*Sqrt[2]*E^((4*I)*c + ((7*I)/2)*d*x) - (1
 - I)*E^(((9*I)/2)*c + (4*I)*d*x) + (8*I)*E^((I/2)*(c + d*x)) - 16*Sqrt[2]*E^(I*(c + d*x)) - (40*I)*E^(((3*I)/
2)*(c + d*x)) + 34*Sqrt[2]*E^((2*I)*(c + d*x)) + (40*I)*E^(((5*I)/2)*(c + d*x)) - 16*Sqrt[2]*E^((3*I)*(c + d*x
)) - (8*I)*E^(((7*I)/2)*(c + d*x)) + Sqrt[2]*E^((4*I)*(c + d*x)) - (4 + 4*I)*Sqrt[2]*E^((I/2)*(2*c + d*x)))*x*
Cos[c/2 + (d*x)/2]^5)/(((-1 - I) + Sqrt[2]*E^((I/2)*c))*(-1 + E^(I*c))*(I - 2*Sqrt[2]*E^((I/2)*(c + d*x)) - (4
*I)*E^(I*(c + d*x)) + 2*Sqrt[2]*E^(((3*I)/2)*(c + d*x)) + I*E^((2*I)*(c + d*x)))^2*(a*(1 + Cos[c + d*x]))^(5/2
)) + ((10*I)*Sqrt[2]*ArcTan[(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(-Cos[c/4 +
 (d*x)/4] + Sqrt[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2]^5)/(d*(a*(1 + Cos[c + d*x]))^
(5/2)) - (115*Cos[c/2 + (d*x)/2]^5*Log[Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4]])/(4*d*(a*(1 + Cos[c + d*x]))^(
5/2)) + (115*Cos[c/2 + (d*x)/2]^5*Log[Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4]])/(4*d*(a*(1 + Cos[c + d*x]))^(5
/2)) + (5*Sqrt[2]*Cos[c/2 + (d*x)/2]^5*Log[2 - Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(d*(a
*(1 + Cos[c + d*x]))^(5/2)) - ((5 - 5*I)*ArcTan[(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (
d*x)/4])/(Cos[c/4 + (d*x)/4] + Sqrt[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2]^5*((1 + I)
*Cos[c/4] + Sqrt[2]*Cos[c/4] - (1 - I)*Sin[c/4] - I*Sqrt[2]*Sin[c/4])*((-1 - I)*Cos[c/4] + Sqrt[2]*Cos[c/4] +
(1 - I)*Sin[c/4] - I*Sqrt[2]*Sin[c/4]))/(Sqrt[2]*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/2] + Sin[c/2])) + ((5/2
 + (5*I)/2)*Cos[c/2 + (d*x)/2]^5*Log[2 + Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]]*((1 + I)*Cos
[c/4] + Sqrt[2]*Cos[c/4] - (1 - I)*Sin[c/4] - I*Sqrt[2]*Sin[c/4])*((-1 - I)*Cos[c/4] + Sqrt[2]*Cos[c/4] + (1 -
 I)*Sin[c/4] - I*Sqrt[2]*Sin[c/4]))/(Sqrt[2]*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/2] + Sin[c/2])) + ((40*I)*A
rcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)/4])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/
2 + (d*x)/2]^5*Cot[c/2])/(d*(a*(1 + Cos[c + d*x]))^(5/2)*Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]) - (20*Sqrt[2]
*Cos[c/2 + (d*x)/2]^5*Csc[c/2]*(-(d*x*Cos[c/2]) + 2*Log[Sqrt[2] + 2*Cos[(d*x)/2]*Sin[c/2] + 2*Cos[c/2]*Sin[(d*
x)/2]]*Sin[c/2] + ((4*I)*Sqrt[2]*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)/4])/Sqrt[-2 + 4*
Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/2])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]))/(d*(a*(1 + Cos[c + d*x]))^(5/2)
*(4*Cos[c/2]^2 + 4*Sin[c/2]^2)) + Cos[c/2 + (d*x)/2]^5/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] -
 Sin[c/4 + (d*x)/4])^4) + (19*Cos[c/2 + (d*x)/2]^5)/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] - Si
n[c/4 + (d*x)/4])^2) - Cos[c/2 + (d*x)/2]^5/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] + Sin[c/4 +
(d*x)/4])^4) - (19*Cos[c/2 + (d*x)/2]^5)/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*
x)/4])^2) + (4*Cos[c/2 + (d*x)/2]^5)/(d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])
) - (4*Cos[c/2 + (d*x)/2]^5)/(d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]))

________________________________________________________________________________________

fricas [B]  time = 1.99, size = 330, normalized size = 1.90 \[ \frac {115 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 80 \, {\left (\cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (35 \, \cos \left (d x + c\right )^{2} + 55 \, \cos \left (d x + c\right ) + 16\right )} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d \cos \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(115*sqrt(2)*(cos(d*x + c)^4 + 3*cos(d*x + c)^3 + 3*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log(-(a*cos(d*
x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 +
 2*cos(d*x + c) + 1)) + 80*(cos(d*x + c)^4 + 3*cos(d*x + c)^3 + 3*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log((
a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8
*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt(a*cos(d*x + c) + a)*(35*cos(d*x + c)^2 + 55*cos(d*x + c) + 16)
*sin(d*x + c))/(a^3*d*cos(d*x + c)^4 + 3*a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

sage2

________________________________________________________________________________________

maple [B]  time = 0.60, size = 601, normalized size = 3.45 \[ \frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (230 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -160 \ln \left (\frac {4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -160 \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -115 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+70 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+80 \ln \left (\frac {4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +80 \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -15 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{16 a^{\frac {7}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+a*cos(d*x+c))^(5/2),x)

[Out]

1/16*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(230*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d
*x+1/2*c))*cos(1/2*d*x+1/2*c)^6*a-160*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1
/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^6*a-160*ln(-4*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-
2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2)))*cos(1/2*d*x+1/2*c)^6*a-115
*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*a*cos(1/2*d*x+1/2*c)^4+70*2^(
1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^4+80*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/
2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^4*a+80*ln(-4*(
a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2)
))*cos(1/2*d*x+1/2*c)^4*a-15*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)^2-2*2^(1/2)*(a*
sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(7/2)/cos(1/2*d*x+1/2*c)^3/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/(2*cos(1/2*d*
x+1/2*c)+2^(1/2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^2\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a + a*cos(c + d*x))^(5/2)),x)

[Out]

int(1/(cos(c + d*x)^2*(a + a*cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Integral(sec(c + d*x)**2/(a*(cos(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________